منابع مشابه
Hardy Space Estimates for Multilinear Operators, Ii
We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint case r = n/n+m+ 1, where m is the highest vanishing moment of the multilinear operator, we prove a weak type result. 0. Introduction A wel...
متن کاملSome Sharp Weighted Estimates for Multilinear Operators
In[6], Hu and Yang obtain a variant sharp estimate for the multilinear singular integral operators. The main purpose of this paper is to prove a sharp inequality for some multilinear operators related to certain non-convolution type integral operators. In fact, we shall establish the sharp inequality for the multilinear operators only under certain conditions on the size of the integral operato...
متن کاملTriebel–Lizorkin space estimates for multilinear operators of sublinear operators
Let T be the singular integral operator, a well-known result of Coifman, Rochberg and Weiss [6] which states that the commutator [b,T ] = T (b f )− bT f (where b ∈ BMO) is bounded on Lp(Rn)(1 < p < ∞). Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. In [9,11], these results on the Triebel–Lizorkin spaces and the case b∈Lipβ (where Lipβ is the homogen...
متن کاملLipschitz Estimates for Multilinear Commutator of Pseudo-differential Operators
As the development of singular integral operators, their commutators and multilinear operators have been well studied (see [4, 5, 6, 7, 8, 9, 10]). In [4, 5, 6, 7, 8, 9, 10], the authors prove that the commutators and multilinear operators generated by the singular integral operators and BMO functions are bounded on L(R) for 1 < p <∞; Chanillo (see [2]) proves a similar result when singular int...
متن کاملSome BMO estimates for vector-valued multilinear singular integral operators
Let b ∈ BMO(Rn) and T be the Calderón–Zygmund singular integral operator. The commutator [b,T ] generated by b and T is defined as [b,T ]( f )(x) = b(x)T ( f )(x)−T (b f )(x). By using a classical result of Coifman et al [8], we know that the commutator [b,T ] is bounded on Lp(Rn) for 1 < p < ∞. Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2016
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2016.1216517